
Selecting the Better Bernoulli Treatment Using a Matched Samples Design
Author(s): Ajit C. Tamhane
Source: Journal of the Royal Statistical Society. Series B (Methodological), Vol. 42, No. 1
(1980), pp. 26-30
Published by: Blackwell Publishing for the Royal Statistical Society
Stable URL: http://www.jstor.org/stable/2984734
Accessed: 21/10/2010 18:20

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=black.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

Royal Statistical Society and Blackwell Publishing are collaborating with JSTOR to digitize, preserve and
extend access to Journal of the Royal Statistical Society. Series B (Methodological).

http://www.jstor.org

http://www.jstor.org/action/showPublisher?publisherCode=black
http://www.jstor.org/action/showPublisher?publisherCode=rss
http://www.jstor.org/stable/2984734?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=black


J. R. Statist. Soc. B (1980), 
42, No. 1, pp. 26-30 

Selecting the Better Bernoulli Treatment Using a Matched Samples Design 

By AJIT C. TAMHANE 

Northwestern University, Evanston, Illinois 

[Received June 1978. Final revision February 1979] 

SUMMARY 
The problem of selecting the better Bernoulli treatment using a matched samples 
design is considered in the framework of the indifference-zone approach. A single- 
stage procedure is proposed and its properties are studied. Tables of sample sizes for 
implementing the proposed procedure are given. A comparison is made with an 
independent samples design and the associated Sobel-Huyett selection procedure. 
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1. INTRODUCTION 
IN this paper we consider the problem of selecting the "better" of the two Bernoulli populations 
(i.e. the one having the larger success probability) when a matched samples design is used. 
The corresponding problem when the independent samples design is used has been considered 
by Sobel and Huyett (1957). It should be noted that although considerable literature exists 
on the problem of comparing matched proportions (see McNemar, 1947; Cochran, 1950; 
Bennet, 1967, 1968; Bhapkar, 1973; Bhapkar and Somes, 1977), mostly it deals with tests of 
homogeneity. However, in many practical situations the experimenter's goal is to select the 
"best" treatment; a test of homogeneity does not provide the information which the experi- 
menter truly seeks in such situations. This paper provides an appropriate formulation of the 
selection problem and gives a procedure for attaining this goal. 

2. ASSUMPTIONS, NOTATION AND PROBLEM FORMULATION 

Consider two treatments T, and T2 and let 7Tij denote the probability that a matched 
observation on T, and T2 results in outcome i with T, and outcome j with T2 (i,j = 0,1) where 
1 denotes success and 0 denotes failure. We have I E 7Tij = 1. We assume that the 7Tij remain 
constant throughout the trial. Thus each matched observation can be thought of as a realization 
from a fixed multinomial distribution with four cells: (1, 1), (1,0), (0, 1) and (0,0); the 
corresponding probabilities are 7T11, 7T10, 7TO, and 7TOO, respectively. Let Pt = 711 + 7T10 and 
P2 = 11 + 7To be the success probabilities of T, and T2 respectively and let P[t] !P[2j denote 
the ordered values of the pi. We assume that the 7Tij are unknown, but the experimenter is 
able to specify an upper limit 7T*(0 < 7T* < 1) on 7T10 + 7TOl = 7T (say). (In general, if matching 
is properly done and T, and T2 are comparable to each other then 7i, the probability of different 
outcomes on T, and T2 with the same matched observation, will be small; see Section 5 for 
further discussion.) The experimenter's goal is to select the treatment associated with p' p 
such a selection is referred to as a correct selection (CS) and the corresponding probability is 
denoted by PCS. The experimenter restricts consideration to procedures which guarantee the 
probability requirement: 

PCSkP* wheneverp[21-p[1,= 8>8*, and 7Tto+roj=7T-7r, (2.1) 

where {7T8 **,P * are constants specified before experimentation starts; 0 < 7T* < 1, 0 < 8* < 7* 
and -<P*< 1. 
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3. THE PROPOSED PROCEDURE AND ITS PCS 
We propose a natural selection procedure which takes n matched observations on T1 and T2. 

Let the outcomes be represented in a 2 x 2 table: 

T2 

Success Failure 
Success x11 x10 T 
Failure xoi x00 

The decision rule is: select T1 if x10 >x01; select T2 if x10< x01; and select T1 or T2 at random 
assigning equal probability to each one if x10 = x01. It might be noted that x1l and x00 play no 
role in the selection procedure. Our main problem is to find the minimum value of n which 
guarantees (2.1). 

Without loss of generality assume that T1 is the better treatment, i.e. P1 >P2 or equivalently 
V10 > Tro1. Then 

PCS = P{X10> X01} + vP{X10 = X01} 

= E[P{X10> xolxo = x} + P{X10 = Xoi X1o + Xo0=x}] (= ) x(l -( 7r)nx. (3.1) 

Note that the quantity inside the squaWre brackets in (3.1) is just P( Y> 2x) + P( Y = lx) if x 
is even, and P{ Y) -(x + l)} if x is odd, where Y has a binomial distribution with parameters 
x and A = vlolv . Denoting it by g(x, A) we have 

g(x, A) = IA{2(x+ 1), '(x+ 1)} for odd x> 1, (3.2a) 

= lA(1x, 2X) for even x > 2, (3.2b) 

2 1 for x = 0, (3.2c) 
where 

I(a, b) = r(a+b) |Pua-l(l-u)b- du 
F (a)rF(b) Jo 

denotes the usual incomplete beta function. 
To guarantee (2.1) it is necessary to find the infimum of the PCS over the region 

PI P2 = Tlh-rol > 8, *10 + v &ol'< *; the minimum value of n which makes this infimum > P* 
will be the desired sample size. To find the infimum, represent PCS = Eff{g(X, A)} where X 
is a binomial random variable with parameters n and Xr and E., denotes the expectation 
evaluated at parameter value v. Intuitively the infimum of the PCS over the specified region 
will occur when the pi are as close as possible and the matching is as ineffective as possible, 
i.e. when p1-P2 = = 8* and 7r10+ vol = 7r* which is referred to as the least favourable 
configuration (LFC). However, note that it is not completely obvious that the PCS decreases 
with increasing 7T since this also corresponds to an increase in the number of "effective" 
observations xl0 and x01. A formal proof of the LFC is thus needed and is given in the 
Appendix. Note that at the LFC, we have 

PCSLFC = Elr*{g(X, 1 + 8*/2X*)} 
nn 
- zg(x,, 1 2+ 8*/27 ( )(7,*)X(1-7T*)n-x.(3.3) 
x=o 

It is fairly straightforward to verify that the right-hand side of (3.3) is increasing in n and 
tends to 1 as n tends to of. Thus any desired value of P* can be attained by choosing n large 
enough. It should be noted that, when S*= 7r*, (3.3) simplifies to 1 -'(1 *)n and when 
T= 1, (3.3) simplifies to g(n, +.*). 
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4. TABLES OF SAMPLE SIZES 
The values of n which guarantee (2.1) were found using (3.3) for n ( 35. For n> 35, the 

following normal approximation was used. Note that since X1o, X0l are multinomial 
frequencies, for large n, (X1O-X0l) can be regarded as a normal random variable with 
mean = n(71o - 7T) and variance = n{i71o + i7T1 - (7-70-ol)2}. Therefore the PCS under the 
LFC can be written as PCSLFCa @{8*4n/V(7T*-8*2)} where (D(.) denotes the standard 
normal distribution function. From this we obtain 

n L (v* 8*2){(D l(p*)}2 (4.1) 

This approximation is useful when P* is large and/or 8* is small and/or 7&* is large. The 
values of n obtained from (4.1) were rounded upwards. The calculations for P* = 0 90 and 
0 95 appear in Table 1; the values of n for P* = 0 99 are almost exactly double those for 
P*= 0 95 and hence are not given here. 

TABLE 1 

Values of n 

P* = 0 90 

8 * 
0-05 0-10 0-15 0-20 0-25 0-30 0-35 0-40 0-45 0-50 

7T* \ 

0-1 65 16 
0-2 130 32 14 8 
0.3 196 48 21 12 7 5 
0.4 262 65 29 16 10 7 5 4 
0-5 327 81 35 20 13 9 6 5 4 3 
0-6 393 97 43 24 15 10 8 6 4 3 
0.7 459 114 50 28 18 12 9 7 5 4 
0-8 524 130 57 32 21 14 10 8 6 5 
0-9 590 147 65 36 23 16 12 9 7 5 
1.0 656 163 72 40 25 17 13 9 7 7 

P*= 0-95 

\8* 
0-05 0.10 0-15 0-20 0-25 0-30 0-35 0-40 0-45 0-50 

0.1 106 23 
0-2 214 52 21 11 
0o3 322 79 34 18 11 7 
0-4 431 106 46 25 16 10 7 5 
0-5 539 133 58 32 20 14 10 7 5 4 
0-6 647 160 70 38 25 17 12 9 7 5 
0-7 755 187 82 45 29 20 14 11 8 6 
0-8 864 214 94 52 34 23 17 13 10 8 
0-9 972 241 106 59 37 26 19 14 11 9 
1.0 1080 268 118 65 41 29 21 17 13 9 

To check the accuracy of the normal approximation we computed exact and approximate 
n-values for 20 < n < 35 and found that the approximate n is always within + 1 of the exact n; 
the accuracy of the approximation improves with increasing n. Thus the normal approxi- 
mation should be very good for n > 35. 
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5. COMPARISON OF MATCHED SAMPLES DESIGN WITH INDEPENDENT SAMPLES DESIGN 

In the case of independent samples design the goal of the experimenter is the same as before, 
namely to select the treatment having the larger success probability. However, since no r 
are present here, the probability requirement simply reads 

PCS >P* whenever P[2]-P[1] = 8> 8 *9 (5.1) 

where {8*,P*} are constants specified before experimentation starts; 0 < 8 < 1 and i < P* < 1. 
Sobel and Huyett (1957) proposed a single-stage procedure which guarantees (5.1) and showed 
that the optimal sample size per population, in large samples, is 

n (I - 2*2){ D-l(p*)}2 (5.2) 

The relative efficiency (RE) of the matched samples design in terms of the ratio of sample 
sizes obtained from (4.1) and (5.2) is 

RE 1- 8*2 ~~~~~~~~~~~(5.3) - 
2(ta h s 1r- *2(3 

Note that we assume the values of 83* and P* specified by (2.1) and (5.1) are the same and that 
RE does not depend on P*. Furthermore, RE> 1 if iT* < 2(1 + 8 *2). Also if &* = I (i.e. 
1T=-10 +o701 iS not constrained by any prior knowledge about its value) then RE = 0 5. 
Thus for r* > 1(1 + 8*2), the matched samples design is less efficient in the large sample case 
than the independent samples design. If the experimenter does not assume any prior knowledge 
concerning the value of 7T, then in the large sample case the matched samples design requires 
twice as many observations as the independent samples design to guarantee the same 
probability requirement. 

These results give a quantitative measure of how effective the matching must be (in our 
notation how small 1T must be) so that the matched samples design is more efficient than the 
independent samples design. The main conclusion to be drawn from this discussion is that, 
in the design of a matched samples experiment a high level of matching should be ensured. 
This can be achieved by choosing the matching variables so that they are highly correlated 
with the outcome variables. If the matching is ineffective then there can be considerable 
loss in efficiency relative to the independent samples design. 

The results obtained here are in broad agreement with the similar work done for the testing 
problem in 2 x 2 tables by several authors, see, for example, Youkeles (1963), Worcester (1964) 
and Miettinen (1968). These authors also reach the conclusion that for testing the homogeneity 
of two proportions, matched samples design can be disadvantageous if the matching is not 
effective and the advantage is not substantial unless the matching is highly effective. For 
additional references and also for some practical aspects of matching see McKinlay (1977). 
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APPENDIX 

To prove the assertion regarding the LFC, we first keep Xf" fixed and regard the PCS as a 
function of A = 7r1Tol. To show that, subject to irl+vil = ir (fixed), the PCS is minimized 
at ilo-vrl = 8*, it suffices to show that g is a non-decreasing function of A for each x. But 
this follows immediately from (3.2); in fact- g is a strictly increasing function of A> l for 
each x > 1. 

Our next task is to find the infimum over X < w* of 

inf PCS = EJ,{g(X, A*)}, (A.1) 
ffo10To14>8* 

where A* = i(f?+ 8*)/lr. To show that this infimum occurs at X = 1T* we prove the following. 

Theorem. E,,(g(X, A*)} is a decreasing function of v. 

Proof. Denote the binomial probability function (f)px(i p)n-x by b(x; n,p) and the 

corresponding distribution function by B(x; n,p). A "discrete analog" of Theorem 2.1 of 
Gupta and Panchapakesan (1972) shows that the condition to be verified for the monotonicity 
of Ef,(g(X, A*)} relative to 7r is 

{(O/ a)g(x, A*)}b(x; n, m) )-{g(x, A*)-g(x- 1, A *)} (a/lav) B(x- 1; n, f) < 0 (A.2) 

for 1 (x < n; for x = 0 the left-hand side of (A.2) is 0. Substitute in (A.3), 

(al/a) B(x- 1; n, r) = -(x/iT) b(x; n, iT) (A.3) 

and find that the condition to be verified becomes 

(a/av)g(x, A*)+ (x/T){g(x, A*) -g (x- 1, A*)} < 0. (A.3) 
With some algebraic manipulations it can be shown that, for x odd, 

g(x, A*)-g(x- 1, A*) = -(i/x)(a/la)g(x, A*). 

Thus, we find that the left-hand side of (A.3) is 0 for x odd. For x even > 2 it follows from 
(3.2a) and (3.2b) that g(x, A*)-g(x-1, A*) = 0. Furthermore, it can be easily verified that 
(a1/a,)g(x, A*) <0. Thus (A.3) is verified in all the cases. Because of the strict inequality for 
x even > 2, it follows that Eff{g(X, A*)} is strictly decreasing in ff. 
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